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The two-nucleon, singlet-even potential is assumed to be an integral operator with kernel 
H'(T, rf)=u(r)Hc(r, r0«(r0-[l-«(f)]^(f)«(r-r0[l-«(f01 

where u{r) is a cutoff factor that goes to zero for large r and one for small r. In the region u(r) = 1 an analytic 
solution to the Schrodinger equation with this potential is constructed for integral operators Hc which are 
functions of Hamiltonians (h2/m)V2-\-U(r) whose eigenfunctions are known analytically. For cases where 
the Schrodinger equation with the potential V (r) also admits an analytic solution, analytic expressions for the 
singlet-even phase shifts are derived. For the crude model with u(r) square, U(r) = V(r) square, the x5o and 
W2 phase shifts for energies up to 340 MeV are evaluated. The fits obtained to the experimental phase shifts 
are fair. 

I. INTRODUCTION 

THE purpose of this paper is to construct and apply 
to some preliminary calculations a phenomeno-

logical, nonlocal potential for singlet-even, nucleon-
nucleon scattering at energies up to the order of 350 
MeV, such that the resultant Schrodinger equation 
may be solved analytically. This potential is intended 
as an alternative to the hard-core potential,1 the latter 
being mathematically difficult to use in calculating 
properties of complex nuclei. I t is only for small inter-
particle distances that the nucleon-nucleon potential is 
taken to be of a nonlocal form for which the Schrodinger 
equation admits analytic solution. The longer range 
part of the nucleon-nucleon force is assumed to be de-
scribable in terms of some other (local) potential. 
Coulomb forces are neglected throughout the work. 

Two classes of nonlocal potential have been used by 
other authors either for the entire nucleon-nucleon po
tential or as an alternative to a hard core. For one class 
(applied to nucleon-nucleon scattering by Moshinsky,2 

Werner,3 Razavy, Field, and Levinger,4 and Green5) the 
nonlocal part of the potential is represented by an ex
plicit momentum-dependent term of the form 

Xp-7(r)p, (1.1) 

where p and r are the relative momentum and position 
of the nucleons respectively and V(r) is a few-parameter 
shape. In the second class, the nonlocal part of the po
tential is taken to have the form of an integral opera
tor; i.e., in the Schrodinger equation for the relative 
nucleon position the potential V(r) times the wave func
tion ^(r) is given by 

- / • 

F(rWr)= drV(r,r'Mr'), (1.2) 

* Supported in part by the U. S. Atomic Energy Commission. 
1 For calculations with a hard core, see J. L. Gammel, R. S. 

Christian, and R. M. Thaler, Phys. Rev. 105, 311 (1957); J. L. 
Gammel and R. M. Thaler, ibid., 107, 291 (1957). 

2 M. Moshinsky, Phys. Rev. 106, 117 (1957). 
3 E . Werner, Nucl. Phys. 35, 324 (1962). 
4 M. Razavy, G. Field, and J. S. Levinger, Phys. Rev. 125, 269 

(1962). 
5 A. M. Green, Nucl. Phys. 33, 218 (1962). 

where the kernel F(r,r') does not contain a 8 function of 
r—r'. I t is this second class of nonlocal potential that is 
the subject of this paper. 

Two types of nonlocal potential of the class given in 
Eq. (1.2) have been previously applied to the calcula
tion of nucleon-nucleon singlet-even phase shifts. One 
of these is the nonlocal separable (NLS) potential 

F ( r , r ' H A E * n{r)vl{r')Pl(ff), (1.3) 

such as introduced by Yamaguchi6 and extended by 
Mitra and Narasimham.7 Here vi(r) is a spherically 
symmetric shape for the Zth angular momentum state 
and Piiff) is the Zth Legendre polynomial whose argu
ment is the cosine of the angle between the unit vectors 
f=rr~1 and f' = rr(rf)~l. The use of this potential re
duces the problem of solving the Schrodinger equation to 
a quadrature for each partial wave. This potential, 
however, inherently contains a large number of param
eters; i.e., each Vi(r) contains (say) a range parameter 
and a strength parameter, while there is no a priori 
physical reason for relating the parameters in any one 
vi(r) to any other vi>(r) with IT^V, 

In the other type of nonlocal potential of the class 
given in Eq. (1.2) the kernel has the form 

F(r,r') = \u(r)G( | r - r' | )«(r ' ) , (1.4) 

where u(r) is a few-parameter spherically symmetric 
shape and G( | r—r' | ) is in effect a smeared-out 8 func
tion of r—r'. Such a potential contains only a small 
number of parameters, but in general it leads to a 
complicated Schrodinger equation which must be solved 
numerically. This type of potential by itself seems to 
have a further disadvantage. A few special cases of 
this potential form were used in a recent calculation by 
Giltinan and Thaler8 who found it necessary to include 
a hard core in the shape u(r) in order to fit both the lSQ 

and W2 phase shifts for energies up to 310 MeV.9 

6 Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). 
7 A. N. Mitra and V. L. Narasimham, Nucl. Phys. 14, 407 

(1960). 
8 D. A. Giltinan and R. M. Thaler, Phys. Rev. 131, 805 (1963). 
9 For application of a nonlocal potential to nucleon-nucleus 

scattering, see F. Perey and B. Buck, Nucl. Phys. 32, 353 (1962). 
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The present work seeks to combine the advantages of 
both the above types of integral operator potential—an 
inherently small number of parameters and ease of solu
tion of the Schrodinger equation. The philosophy behind 
this work is not that the particular form of nonlocality 
used is physically meaningful in terms of a fundamental 
theory, although it appears that some form of nonlocal 
potential is needed.8 but rather that a model of the 
nucleon-nucleon force may be obtained which can ex
plain the two-body experimental data and so be a fit 
candidate for application to the few-nucleon, or many-
nucleon, problem. 

In the next section the desired analytic solution to the 
Schrodinger equation in the core region for a quite 
general type of nonlocal potential and some of the prop
erties of this type of potential are discussed. In Sec. 
I l l the nucleon-nucleon singlet-even phase shift is cal
culated for a particular form of nonlocal core potential 
under the assumption that the long-range part of the 
Schrodinger equation also admits analytic solution. 
Some exploratory attempts to fit a particular model 
with square shapes to the experimental Ŝo and lDi 
phase shifts at energies up to 340 MeV are discussed 
and their results given in Sec. IV. 

II. BASIC FORMALISM 

In the center-of-mass coordinate system the Schro
dinger equation for the scattering of two nucleons at an 
energy E is 

H^E=E\pE. (2.1) 

The Hamiltonian H involves the relative position r and 
the relative angular momentum L of the two nucleons, 
but, since application is to be made to singlet-even scat
tering, only even angular momentum states are of inter
est. The wave function \[/E satisfies the usual scattering 
state boundary conditions; i.e., \[/E is the sum of an inci
dent plane wave and a sacttered wave which for large 
r= | r | has the form of a scattering amplitude times an 
outgoing spherical wave. 

The Hamiltonian H is taken to have the form 

H=K+H', (2.2) 

where K is the relative kinetic energy operator and Hf 

is an integral operator such that 

H'MT) = fdt # ' ( r , r ' ) ^ ( 0 . (2.3) 

The kernel H'(r,t') is taken to have the form 

H'(r/) = u(r)Hc(r,r')u(r') 
+ [l-«(f)]Fi(r ,r /)Cl-«(f ,)]> (2.4) 

where 
fl, r«c 

«(r)-> . (2.5) 
10, r » c 

The kernel Hc(r,tf) represents the nucleon-nucleon inter
action deep inside the core, #i(r,r') represents the long-
range part of this interaction, and u(r) is a radial cutoff 
factor with c being in some sense the core radius. Such a 
model is based on the interpretation of the fact that the 
x50 phase shift becomes negative at high energies while 
the 1D2 phase shift does not10 as due to a repulsive core 
which strongly influences the 5-wave part of the wave 
function, but because of its short range, influences the D 
wave only weakly, if at all. 

The Schrodinger equation may now be written sym
bolically as 

ZK+uHcu+(l-u)H1(l--u)lfE==ExlsE. (2.6) 

It is assumed that Hi is describable in terms of a local 
potential, 

H1(r/)o:V(r)d(t-rf)J (2.7) 

so that methods of handling Eq. (2.6) for r^>c, where 

IK+H{\^=E^E (2.8) 

are well known, while Hc is assumed to include a non
local nonseparable potential. It is for the region inside 
the core, where Eq. (2.6) becomes 

[ tf+tf *>*=£** , (2.9) 

that an analytically solvable model is to be investigated. 
The basis of the development given below is the as

sumption that K-\-Hc has the form 

K+Hc=K+U+He'=H0+He', (2.10) 

where U is a local potential11 such that the functions 
(j>€ that satisfy 

#o4>e=e0e (2.11) 

are known analytically for all r, and Hc
f which repre

sents the nonlocal potential is itself a function of H0, 

Ho'=f(B0). (2.12) 

But He is an integral operator, so f(H0) must contain 
an inverse differential operator C/iCSo)]-1; i.e., Hc' 
may be written 

ffe'=tfi(ffo):hWro) (2.13) 
and the fj(H0), j=l,2, contain only positive powers of 
Ho. The substitution of Eqs. (2.10) and (2.13) into Eq. 
(2.9) yields the integrodifferential equation 

{3o+Ui(Bo)TlMSo)}^B=E^B9 r«c. (2.14) 

This equation may be converted into a differential 
equation by operation from the left with fi(Ho), which 

10 G. Breit, M. H. Hull, K. E. Lassila, and K. D. Pyatt, Phys. 
Rev. 120, 2227 (1960). 

11 Outside the spirit of this work U and Hi could be taken to be 
NLS potentials. In such a case the results of this section and the 
next with slight modification would also be applicable. 
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yields after rearrangement of /(-Ho), 8 is chosen to satisfy 

{ / i ( F 0 ) [ i ? o - £ ] - / 2 ( ^ o ) } ^ = 0 . (2.15) S<U(r)9 allf . (2.22) 

The general solution to Eq. (2.15) may now be con
structed by application of the well-known fact that for 
a function /(.Ho), Eq. (2.11) implies 

/(£ro)0« = / (e)0 , . (2.16) 

In particular, the expansion of \j/E in terms of the <£e, 

^B=H.A(E9e)^ (2.17) 

when substituted into Eq. (2.15) yields 

EeAiE^Me^e-E^Me)}^^. (2.18) 

In general, 

/ l ( € ) [ € - E ] - / , ( € ) = 0 (2.19) 

has a set of solutions 

€ = € i , €2,' • • , 

so that the left-hand side of Eq. (2.18) can be made to 
vanish by the requirement 

A(E,e) = 0, €^€ i ,€v ; (2.20) 

i.e., \//E, as given by Eq. (2.17) but with the sum running 
only over the solutions to Eq. (2.19), is the general 
solution of Eq. (2.15). 

As Eq. (2.15) was in effect obtained from Eq. (2.14) 
by differentiation, the desired solution to Eq. (2.14) 
may be obtained from the \[/E just constructed. First, 
only functions <£€ which satisfy the same boundary con
dition at r = 0 as the desired solution to Eq. (2.14) are 
to be included in the expansion of yj/E. Second, the so far 
arbitrary coefficients A(E,e) may be determined by the 
requirement that when \f/E is substituted into Eq. (2.14) 
written out in full (not merely in symbolic form) an iden
tity results. This requirement yields a sufficient number 
of relations among the coefficients A(E,e) to determine 
them all in terms of the value of the logarithmic radial 
derivative of the wave function at (say) r=r0<c and the 
normalization of the wave function which, of course, is 
quite arbitrary since it plays no role in the scattering 
problem. This completes the construction of the desired 
solution to Eq. (2.14) for a given /(-H0). 

The integral operator /(-Ho) is completely arbitrary 
except for the symmetries imposed by the usual in-
variance requirements.12 These requirements are satis
fied if the kernel Hc(j,t

f) of this operator is a real sym
metric function of its arguments. A natural choice for 
such an operator is a Green's function of -H0, 

f(H0) oc [ S - t f o } - ^ IS-K- UJ-K (2.21) 

To ensure the reality of Hc(r/), that is to avoid the 
addition of a small imaginary term to the denominator 

12 For a discussion of these requirements, see S. Okubo and 
R. Marshak, Ann. Phys. (N. Y.) 4, 166 (1958). 

In other words, with this condition, f(H0) operating on 
any eigenstate <£e of H0 gives a finite result; for a re
pulsive potential, U(r)>0, HQ has only positive eigen
values, while for an attractive potential, U0<U(r)<0, 
S< U0 implies £<e&, where e& is the energy of the low
est bound state of U(r).n Other choices for /(-Ho) in
clude derivatives of this Green's function with respect 
to S or any such function multiplied by a positive in
tegral power of Ho. In all of these, S is one of the free 
parameters of the model to be determined by com
parison with experiment. 

The form given in Eq. (2.21) for /(-Ho), or in any of 
the other choices mentioned above, does not define 
/(-H0) completely. There are two boundary conditions 
on the kernel £Tc(r,r') as a function of r yet to be 
specified. One of these is the usual condition that 
-Hc(r,r') is well behaved at r = 0 . Usually (e.g., in the 
treatment of the free wave Green's function in a two-
body scattering or bound-state problem) the other 
boundary condition imposed on a Green's function re
lates to the behavior of its kernel as r —*°o . In the case 
under discussion the region of interest is r<c so that 
this second usual boundary condition may or may not be 
applicable. If the cutoff factor u(r) is taken to be sharp, 
u(r) = 0 for r>c, then there is no physical basis for the 
preference of one type of behavior of Hc(r,tf) at very 
large r over some other type of behavior. If, on the other 
hand, u(r) is smooth then a boundary condition on 
Hc(t,t') as r —>°o is applicable. In fact if this boundary 
condition is taken to be that Hc(r,r') vanishes rapidly 
as r —* GO , then the self-consistency of the model in that 
Hi alone represents the long-range part of the potential 
is guaranteed. This same boundary condition may be 
carried over to the case of a sharp cutoff by the consider
ation that a sharp cutoff is merely a convenient approxi
mation to the more physically reasonable smooth cutoff. 

The final point to be investigated is whether uf(H0)u 
is attractive, or repulsive, or in fact either. If H0 con
sists only of the relative kinetic energy operator 
U(r) = 0, then for the types of f(H0) discussed above 
uf(H0)u is either a positive definite or a negative 
definite operator; i.e., uf(H0)u represents either a re
pulsive or an attractive force. For example, with 

f(Ho)=-NHoZg-HQ-]-1, (2.23) 
where 

# O = - ( ^ 2 / 2 M ) V 2 , £ < 0 , (2.24) 

and the expansion for arbitrary 

u(r)f(r) = (2TT)-3/2 / dqa(q)e^r, (2.25) 

13 If U(r) is singular, a principal value integral may be used and 
condition (22) avoided. 



N O N L O C A L S I N G L E T - E V E N N U C L E O N - N U C L E O N P O T E N T I A L S B 1627 

the matrix element 

is easily seen to be equal to 

NJdq| a(q) | WAOE| 8\ + (W/WY1, 

an expression whose sign is that of the parameter 
N. For N positive (negative) uf(H0)u is repulsive 
(attractive). 

If Ho contains a repulsive potential or an attractive 
potential that is too weak to support even an S-wave 
bound state, uf(H0)u is again a definite operator. How
ever, if Ho contains an attractive potential which is 
strong enough to support a bound state in (say) the /th 
angular momentum channel, then a different situation 
exists. In this case the /th partial-wave part of (ip,ufu\f/) 
contains a contribution from the bound state which 
may not have the same sign as the contributions from 
the positive energy states. For example, if f(H0) has 
the form given in Eq. (2.23) but with 

Ho=-(ft2/2lx)V2-U(r)J (2.26) 

where U(r) satisfies 

0<U(r)<U0, 0<r<oo (2.27) 

and has a bound state in the /th angular momentum 
channel at an energy — e, then the /th partial-wave 
part of (\f/,uf(H0)u\l/) has the form 

- e i V > z ( - e ) | 2 

[-(positive energy terms), (2.28) 
\8\-e 

where 

^ ( - e ) = (0_ e , ; ,^ ) 

and 0_c,z is the bound-state wave function. The sign of 
the positive energy contribution to expression (2.28) is as 
before the same as the sign of N, whereas, since | 8 \ > U0 

[see Eqs. (2.22), (2.26), (2.27)] so that \S\>e, the sign 
of the explicit term in expression (2.28) is opposite 
that of N. If the parameters 8, N, etc., are chosen so 
that the positive energy terms dominate expression 
(2.28), the situation is the same as that described above; 
i.e., uf(Ho)u is attractive or repulsive as N is negative 
or positive for all angular momentum channels including 
the /th. If the pole term dominates then uf(H0)u is 
attractive (repulsive) in the /th angular momentum 
channel while being repulsive (attractive) for all other 
angular momenta. In the next section it is assumed that 
the positive energy terms are dominant. 

With an analytic solution to Eq. (2.16) deep inside 
the core, it remains only to assume that u(r) is square 

u(r) = l, r<c ,00Q, 

and Hi is a potential such that Eq. (2.8) admits an 
analytic solution, to obtain a Schrodinger equation 
which is analytically solvable everywhere. On the basis 
of meson theory this last assumption is not correct as 
the one-pion-exchange potential (OPEP) is not a po
tential for which the Schrodinger equation may be 
solved analytically. Nevertheless, for the purpose of a 
detailed description of the model under consideration 
it is useful to make this assumption. For a more realis
tic attempt to fit the scattering data than is carried out 
below, the wave function outside the core may be de
scribed numerically. 

III. DETAILED EXAMPLE 

In order to exhibit the details of the formalism a par
ticular example is now investigated. The various opera
tors defined above are chosen to have the forms 

# o = - V 2 - £ 7 , (3.1) 

ffx=-7, (3.2) 

8=-e<0, (3.3) 

with f(H0) given by Eq. (2.23). The right-hand sides of 
Eqs. (3.1), (3.2), (3.3) are in units of (fi2/m) where m is 
the nucleon mass. The operators U and V are taken to be 
local positive potentials so that —U and —V are 
attractive. The cutoff u(r) is chosen to be given bv Eq. 
(2.24). 

Symbolically the Schrodinger equation is 

(V2 + ^ ) ^ - { - ( l - ^ ) F ( l - ^ ) 

+ « [ - U+N(V2+ U- £2)~X(V2+ # ) > } * , (3.4) 

where k2= (mE/fi2). The application of the identity 

(V2+ u - £*)-i( V 2+ U) = 1+£ 2 (V 2+ U- e)~x (3.5) 

to Eq. (3.4) and a partial-wave analysis yields the equa
tion for the /th partial wave 

( A 2 + f t 2 ) ^ ( f ) = - [ l - « ( r ) ] 2 F ( r ) ^ W 

-u(r)lU(r)-N^u(r)^(r)+Neu(r) 

/.oo 

X (rydr'Cnti^r/MrOUr'), (3.6) 
./o 

where 
1 d/ d\ 1(1+1) 

W = ( r * - ) , (3.7) 
r2 dr\ dr/ r2 

and Gi(£2; r,r') satisfies 

[ A 2 + U(r)- £2]G*(£2; r/) = (rr'^r-r'). (3.8) 

The boundary conditions on \f/i(r) are 

rpi(r) is regular at r = 0 , (3.9) 

^M -> ji(kr)+ftr-leihr as r-><*> , (3.10) 

\pi(r) is continuous at r=c, (3.11) 

file:///8/-e
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d\f/i(r)/dr is continuous a,tr=c. (3.12) 

In Eq. (3.10), ji(kr) is the lib. spherical Bessel function14 

and fi is the Zth scattering amplitude 

/ l =Ji-V a ' s in5i, (3.13) 

where 8i is the /th phase shift. Equations (3.9) and 
(3.10) are the usual scattering state boundary condi
tions for the /th partial wave. The boundary conditions 
at r= c follow from the form of Eqs. (3.6) and (3.8); i.e., 
from Eq. (3.8), Gz(£2; r/) is a continuous function of r 
(although its derivative is discontinuous at r~ r') so that 
if \pi(r), or its derivative, has a finite jump discontinuity 
at r—c the right side of Eq. (3.6) has at worst a finite 
jump discontinuity at r—c while the left-hand side of 
this equation has an infinite singularity at this point. 

To guarantee that the integrand is well behaved at 
r' = 0, the boundary condition (3.9) is also imposed on 
Gi{¥ ]r/) • The second boundary condition on Gi(£2; r/) 
—whose specification completes the definition of this 
kernel—is for the moment left arbitrary. This is a 
boundary condition a,t r=c and will be referred to below 
as boundary condition A. 

In the region r>c Eq. (3.6) becomes 

[ W + F ( r ) + # > * ( ' ) = 0. (3.14) 

For convenience it is assumed that V(r) = 0 for r>b. 
Furthermore, the functions Xn(a2,r), Xn{a2.r) which 
satisfy 

[ZV+ 7(r)+«2]Xi(aV) = 0 (3.15) 

[where the subscript 1 denotes that solution to Eq. 
(3.15) which is regular at r = 0 and the subscript 2 de
notes a solution to Eq. (3.15) that is irregular at r=0, 
so that Xn and Xn are linearly independent] are 
assumed to be known. The desired solution to Eq. 
(3.14) may be written 

^i(f) = 5I[Xn(*V)+C|X,2(ftV)], c<r<b , , 
= il[_ji(kr)+ikflhl^(kr)1, r>b, K * ; 

where hia)(kr) is the spherical Hankel function of the 
first kind14 and Bi, Ci are constants to be determined 
from the boundary conditions on ypi{r). 

For r<rc Eq. (3.6) becomes 

ZDt+UW-N+k^iir) 

= N? t (r'ydr'die; r / )* , ( r ' ) . (3.17) 
Jo 

From the discussion in Sec. II, it follows that the solu
tion to this equation has the form 

Ur) = XAi(k^)<t>n(P2>r), (3.18) 

14 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book 
Company, Inc., New York, 1955), 2nd ed., pp. 77-79. 

S C H I C K 

where <t>ii(/32,r) satisfies 

[ZV+ t7(r)+/32]*u(j8V) = 0 (3.19) 

and is regular at the origin, while the sum runs over 
those values of /52 that satisfy 

P2+(l32+¥)-1Np2-k2=0. (3.20) 

In full then 

^z(r) = i4,(*^12)0 z l(^1s j f)+ 4^2 A2)0 | 1^2 2 > r) 9 (3.21) 

where 

ft*=i(*2-P-tf)-i(-i)y 

for j= 1,2. ^ 
To determine the ratio of the coefficients in Eq. (3.21) 

it is necessary to substitute \l/i(r) as given by this equa
tion into Eq. (3.17), and evaluate both sides of the result 
explicitly. The kernel Gi(%2;r,r') in the region r/<c 
may be shown to be given by15 

Gi(e,r/) = hM-e, rJM-?, f>>, (3.23) 

where r<(r>) is the lesser (greater) of r, r'; <f>ii(— £2, r), 
<t>n(-?,r) are solutions to Eq. (3.19) with /32=-£2 

such that $11 is regular at r=0 and <fo3 satisfies boundary 
condition A; Az is given by 

\ z = ( / ) 2 A z ( l , 3 ; - £ 2 , - £ V ' ) , (3.24) 

with the Wronskian A* defined as 

AiO',i; ̂ 2,72', %) = <t>u{\2,x)(l>i/{y2,x) 
-<t>ii^\oc)<t>ih\x)) (3.25) 

and a prime denotes differentiation with respect to x. 
With the use of these relations and the identity [easily 
derived from Eq. (3.19)] 

^(\2-y2)-^y2^{i,j-\2^y) 

-* 2A^,y; \ 2 ,7 2 ;*)] (3.26) 

Eq. (3.21) when substituted into Eq. (3.17) gives16 

E Al(k
2^i

2)i-pi
2+k2~N+(i3i

2+e)-iNe'2 

X t / V + ^ A K M ; ^ 2 , -?)c). (3.27) 

16 See P. M. Morse and H. Feshbach, Methods of Theoretical 
Physics (McGraw-Hill Book Company, Inc., New York, 1953), 
Vol. I, pp. 791-895; or R. G. Newton, J. Math. Phys. 1, 319 
(1960). 

16 For potentials no more singular at the origin than r"1, the 
contribution to the right-hand side of Eq. (3.26) from the lower 
limit x=0 vanishes. 
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By virtue of Eq. (3.20) the left-hand side of this equa
tion vanishes identically so the relation between the 
Ais that must hold for Eq. (3.27) to be an identity is 

E A^mS+er'Aiil, 3: &2-£2 ; c) = 0. (3.28) 

The boundary conditions on \f/i(r) at r=b, c may now 
be used to obtain an expression for the phase shift 81. 
From Eq. (3.16) the continuity of the logarithmic 
derivative of \pi(r) at r=b yields 

k cotdi= LNn+dN^lDn+CiD^-1, (3.29) 

where 

Ni^k[ni,{kb)Xlj{k\b)-ni{kb)Xlj\k\b)'], 
j=\,2 y (3.30) 

DiJ=jif{kb)Xlj{k\b)-jl{kb)Xl/{k\b), , / = l , 2 , (3.31) 

while the continuity of this same derivative at r= c gives 
from Eqs. (3.16), (3.21), (3.28) 

Ci= , (3.32) 

0V+e) Yi(pw)+w+e) YiWfit) 
where 

X,(X2,72) = A z ( l , 3 ; X 2 , - ^ ; , ) 
XAi(l,l;7

2,ft2;c), (3.33) 

Fz(X2,7
2) = Az(l ,3;X2 , -^;c) 

X2z(l,2;7
2,*2;c), 

*i(*,i; X2 ,T2 ; *)=*K(xa,*)xi/(72,ap) 

-*i/(X2,*)Xw(78,*), (3.34) 

and a prime again denotes differentiation with respect 
to x. 

Equations (3.29) through (3.34) give the phase shift 
di in terms of the parameters of the model used. If U(r), 
V(r) are taken to be two-parameter potentials with U0, 
VQ being depth parameters and rh r2 being range param
eters of U(r), V(r) respectively, then the model contains 
seven free parameters: U0, 70, rh r2, N, £2, c. [If V(r) is 
a square well, b = r2; otherwise the introduction of b is 
just a device that allows the wave function to be written 
down in the region of very large r independent of the 
shape of V(r).~] This is too many parameters for a fit of 
the singlet-even scattering data to be very meaningful. 
There are of course many ways of reducing the number 
of free parameters. For example Vo and r2 may be fixed 
by the choice of the OPEP for V(r). In this case the 
wave functions Xij(k2,r) must be found numerically. 
Again, two free parameters may be eliminated by the 
choice Z7(r) = 0, or U(r)=V(r), or rx=r2 and £2 = iV, al
though these latter choices tend to obscure the de

pendence of the phase shift on particular features of 
the model. In any case the number of free parameters 
may be reduced to at most five, which is only one more 
than the number used in, for example, Refs. 4 and 8. 
These five parameters could be chosen so that &cot di 
as given above yields the correct x50 scattering length, 
effective range, and phase shift at (say) 350 MeV as 
well as the correct lD2 phase shifts at (say) 100 and 350 
MeV. The test of the model would then be the fit ob
tained to the lSo and XD2 (and possibly XG4) phase 
shifts at intermediate energies. 

Except for d-iunction potentials and the like the 
choice of a local potential for which the eigenfunctions 
of Eq. (3.19) are known analytically for all angular mo
menta is limited to a square shape. However, there are a 
variety of local potentials (e.g., exponential, Bargmann 
potentials,17 Yost potential18) for which the S-wave 
eigenfunctions are so known. For such potentials the 
S-wave part of the core may be treated exactly while, 
since the XD2 phase shift is small for energies below 350 
MeV, a perturbation treatment of the entire potential 
should suffice for the D wave. 

IV. NUMERICAL APPLICATION 

The numerical analysis described below was of a 
strictly exploratory nature, rather than an attempt to fit 
the data with a model containing a potential shape 
justifiable on a fundamental basis. The computations 
were performed on the CDC 1604 at the University of 
Minnesota Numerical Analysis Center. A straight
forward input-output program was used so that the re
sults obtained are in no sense a "best fit." 

Two types of numerical computations were per
formed. In both of these it was assumed that u(r) was 
square shaped and that 

fl, r<b 
V(r)=U(r) = Uo\ (4.1) 

10, r>b. 

In the first type of computation the further assump
tion was made that at low energies the core plays no 
role; i.e., the expansion of k cot50 through order k2 is 
the same as it would be in the case N=0. This assump
tion leads to the single condition19 

A0(l ,3;0,-P,<;) = 0, (4.2) 

which reduces the total number of free parameters to 
four, of which only two—UQ and b—are available to fit 
the low-energy ^o scattering data. This condition can
not be satisfied if boundary condition A is chosen to cor
respond to a rapid vanishing of Cro(£2;r,/) at large r; 
i.e., if 

^ ( - ^ ^ r ^ e x p C - a 2 - ^ ) 1 ^ ] , r>r'. (4.3) 
17 V. Bargmann, Rev. Mod. Phys. 21, 488 (1949). 
18 R. Jost, Helv. Phys. Acta 20, 256 (1947). 
19 See Appendix. 
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TABLE I. Sets of parameters for which phase shifts 
are given in Tables II-IV. 

Set 
number 

1 
2 
3 
4 
5 
6 

cQO 
2.059 
1.666 
1.182 
1.0 
0.9 
0.9 

*(F) 

2.540 
2.540 
2.540 
1.5 
1.4 
1.4 

c7o(F"2) 

0.352 
0.352 
0.352 
3.5086 
3.8264 
5.0295 

£2 (F-2) 

0.398 
0.469 
0.845 
4.00 
4.00 
6.25 

NOT*) 

1.230 
3.585 

490.0 
150 
400 

2350 

For the sake of simplicity then, a rising exponential be
havior was chosen for <j>oz(— £V)> the absence of the 
nonlocal potential at distances greater than c now being 
due solely to the cutoff factor u(r). With this choice 
Eq. (4.2) reduces to 

fc= (c70c
2)1/2 cosec(c70c

2)1/2. (4.4) 

The values used for U0 and b—chosen to give a x50 scat
tering length and effective range of —23.74 and 2.65 F, 
respectively20—were U0= 0.352 F"2 and 6=2.54 F. 
Various combinations of N and c, with £ given by Eq. 
(4.4) for each value of c, were then used to obtain a fit 
to the !50 phase shift at 340 MeV. The tfo phase shift at 
intermediate energies as well as the 1Z>2 phase shift 
from 100 to 340 MeV were also calculated for each 
such fit. 

TABLE II . The *S phase shifts from the first type 
of computation.8 

E (MeV) 20 100 180 260 340 

«o(l) 
*o(2) 
«o(3) 
Breit's 

iToCYLAM) 

0.885 
0.887 
0.888 

0.856 

0.304 
0.326 
0.333 

0.380 

0.047 
0.089 
0.103 

0.136 

-0.098 
-0.061 
-0.047 

-0.033 

-0.195 
-0.195 
-0.195 

-0.195 

a Phase shifts are in radians. 5o(«) is the phase shift calculated for the *th 
set of parameters given in Table I. For all three So(i), the scattering length 
a = —23.74 F and the effective range r =2.65 F. 

The results for the x50 phase shifts for three different 
core ranges, as well as the values from the Breit (YLAM) 
phase-shift analysis,10 are given in Table II. (See Table 
I for the corresponding three full sets of parameters— 
sets 1, 2, 3—as well as the sets of parameters—sets 
4, 5, 6—used in the second type of computation.) It is 
clear from this table that the fit to the data obtained 
here is acceptable only when the nonlocal potential is 
a core potential; i.e., c<(b/2). The use of core radii 
c<1.0 F requires such large values of N, (iV>105), to 
drive the x50 phase shift negative at 340 MeV that de
tailed calculations were not performed in this region. 

The results for the 1D2 phase shift (not shown) were 
very poor, being far too attractive at lower energies 

20 J. L. Gammel and R. M. Thaler, Progress in Elementary Par
ticle and Cosmic-Ray Physics (North-Holland Publishing 
Company, Amsterdam, 1961), Vol. V, p. 156. 

(^100-200 MeV) and very much too repulsive at higher 
energies. Here again, though, the smaller core radii gave 
the better results. A possible cause of the failure of the 
model to fit the 1D2 phase shift is the distortion intro
duced by the use of an unphysical square shape for 
U(r); i.e., the very long-range attraction of this shape 
necessitates the use of such a large N to drive the x5o 
phase shift negative at high energies that the 1D2 

phase shift is also driven negative at these energies.21 

In the second type of computation Eq. (4.2) was not 
used. The large r behavior of <j>o%(— £2, r) was chosen to 
be that given in Eq. (4.3); otherwise the model used 
was the same as that used above. Here five free param
eters were available. 

TABLE III. The lS phase shifts from the second type 
of computation.* 

E (MeV) 

«o(4) 
8o(5) 
5o(6) 
Breit's 

iTo(YLAM) 
Gammel-

Thaler 
RFLb 

20 

1.005 
1.039 
1.012 

0.856 

0.859 
0.852 

100 

0.472 
0.544 
0.485 

0.380 

0.379 
0.341 

180 

0.150 
0.233 
0.154 

0.136 

0.120 
0.103 

260 

-0.083 
0.012 

-0.087 

-0.033 

-0.069 
-0.079 

340 

-0.259 
-0.165 
-0.279 

-0.195 

-0.192 

a Phase shifts are in radians. 5o (i) is the phase shift calculated for the ith 
set of parameters in Table I. The scattering length a and effective range r 
are (in F) as follows; a (4) = -24.2, a(5) = -23.9, a(6) =a{G-T) = -23.6 
a(RFL) = « , r(4)=2.07, r(5) =1.92, r(6) =2.03, r(G-T) =2.65, r(RFL) 
=2.71. 

b Reference 4. 

As a starting point the value £2=4.00 F~~2 (i.e., a non
local range, £_1> of half a fermi) was chosen. For each 
of the sets £=0.5 and 1.0 F, b=0.5 to 2.5 F (in steps of 
0.5 F with b>c), U0 was varied over the range 0.14 to 
3.98 F~2 and N was varied from 1.0 to 104 F~2. The tfo 
and 1D2 phase shifts were calculated at energies up to 
340 MeV for each set of values assigned to c, b, U0, and 
N and the results compared with the Breit (YLAM) 
phase-shift analysis.10 A rough fit to both phase shifts 
over the entire energy range was found at c=1.0 F, 
£=1.5 F. These parameters were kept fixed while U0 

and N were varied in more detail until the number 4 set 
of results in Tables III and IV was obtained. 

TABLE IV. The XD phase shifts from the second type 
of computation.* 

E (MeV) 100 180 260 340 

«s(4) 
*2(5) 
82(6) 
Breit's K2 (YLAM) 
Gammel-Thaler 
RFLb 

0.100 
0.097 
0.060 
0.072 
0.096 
0.114 

0.143 
0.135 
0.106 
0.120 
0.181 
0.200 

0.153 
0.156 
0.138 
0.160 
0.239 
0.246 

0.129 
0.141 
0.146 
0.184 

0.259 

a Phase shifts are in radians. 52 (i) is the phase shift calculated for the ith 
set of parameters in Table I. 

b Reference 4. 

21 Spurious effects due to the very high momentum components 
involved in the sharp corner of the square well may also be present. 
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The ranges c and b were then varied separately in 
steps of 0.1 F with Uo and N adjusted accordingly to 
maintain, or improve, if possible the fair fit already ob
tained. It was found, for example, that an increase (de
crease) in b with the approximate S-wave fit main
tained, caused the D-wave phase shift to become too 
attractive (repulsive). An increase (decrease) in c had 
results similar to a decrease (increase) in b. These vari
ations in the phase shift are of course just what would be 
expected. 

The parameters c and b were then decreased simul
taneously to the respective values of 0.9 and 1.4 F, and 
the parameters U0 and N were varied until the number 5 
set of results listed in Tables III and IV was obtained. 
The D-wave fit here is better but the 5-wave fit slightly 
worse than with the number 4 set of parameters. Cor
responding results (not shown) were obtained with 
c = l . l F a n d & = 1 . 6 F . 

Further attempts to find a significantly better fit to 
the x5o phase shift than those given in Table III without 
disturbing the good D-wave fit—attempts which used 
values of c in the range 0.8 to 1.4 F and values of b 
from 0.8 to 2.0 F, both in steps of 0.1 F with b>c—were 
not successful. In particular the lS0 effective range could 
only be fit at the expense of the high-energy x50 phase 
shift. It should again be noted that the fits obtained 
here, rough as they are, were obtained with the nonlocal 
potential again acting as a core potential (i.e., c^2b/3), 
but with the core radius a large enough fraction of b to 
make the D-wave phase shift quite sensitive to the 
value of c. 

Some of the computations were repeated with J2=6.25 
and 11.11 F"2. The effect of changing £2 from 4.0 to 
6.25 F - 2 is typified by comparison of sets number 5 and 
number 6 in Tables III and IV. With higher values of 
£2 the high-energy 5-wave phase shift becomes too re
pulsive and the high-energy D-wave phase shift too 
attractive. 

In addition to the results obtained here with five free 
parameters, Tables III and IV also list the results of 
the Gammel-Thaler1 hard-core calculation (3 free 
parameters) and the results of one of the velocity-
dependent models (with four free parameters) used by 
Razavy, Field, and Levinger.4 Even with the con
sideration that the potential shapes used in the present 
work were more crude than the shapes used by these 
other authors, the fits obtained here are not as good as 
the previous fits. 

Taken as a whole, however, the results of this section 
are not discouraging. Further calculations using more 
sophisticated shapes for U(r) as well as other forms of 
nonlocal kernels are in progress. If these calculations 
show that a fit to the singlet-even scattering data may 
indeed be obtained, then an extension of the model to 
the other two-body phase shifts and, if justified, even
tual application to the many-nucleon problem will be 
carried out. 
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APPENDIX 

For mathematical completeness an abbreviated proof 
that Eq. (4.2) alone ensures that the S-wave scattering 
length and effective range for the model used in Sec. IV 
are the same as they would be for N=0 is given below. 
It should be noted that the result does not depend on a 
square shape for U(r). 

Since U(r)= V(r), it follows from Eq. (3.4) that N=0 
implies that the core radius c plays no role; i.e., the core 
radius cannot appear on the right-hand side of Eq. 
(3.29). But this parameter appears only in Ci as given 
in Eqs. (3.32) through (3.34). With "#=0 then the 
S-wave phase shift is given by Eq. (3.29) for 1=0 with 
Co=0. Furthermore, the functions on the right-hand 
side of Eq. (3.29) may each be expanded in a Taylor 
series in k2. In particular 

Co=Coo+Coi&2+--., (Al) 

where C0o, Coi are C0 and its derivative with respect to 
k2, respectively, evaluated at k2=0. To make the right-
hand side of Eq. (3.29) have the form it would have if N 
vanished it is necessary that 

C00=0 and C0i=0. (A2) 

In evaluating these coefficients it follows from U(r) 
= V(r) and Eqs. (3.15), (3.19), (3.25), and (3.34) that 

2z=A*. (A3) 

Consider first the condition C0o=0. For small k2 

Eq. (3.22) yields 

ft2= ~Po2+N(3<r2k2--Nei3<r«k*+ • •, (A4) 

ft2- ¥P<r2k2+Nep<r*k*+ • • •, (A5) 

where ft2=£2+N>0. Equations (A3) through (A5) 
along with Eqs. (3.32) through (3.34) reduce the condi
tion C0o=0 to the form 

A0(l, 3; 0-£ 2 ; c)A0(l, 1; - f t 2 , 0 ; c) = 0. (A6) 

The vanishing of the factor A0(l, 1; — ft2, 0; c) in Eq. 
(A6) requires 

[0oi'((V) /0oi(O,c)]= [ 0 o i ' ( - f t V ) / M ~ f t V ) ] , (A7) 

where 0Oi(XV) = r<£oi(AV). From Eq. (3.19) and the fact 
that there is no singlet-even 5-wave bound state, it 
follows that for r<b the sign of the second radial deriva
tive of 6oi (0,r) is the opposite of the sign of this func
tion itself, so that the left-hand side of Eq. (A7) is 
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negative. But Eq. (3.19) and f3o2—U(r)>0 require that 
the right-hand side of Eq. (A7) be positive. In other 
words, for Eq. (A6) to be satisfied Eq. (4.2) must hold. 
Furthermore, by an argument similar to the one just 
used it may be shown that Eq. (4.2) cannot hold if 
<£o3(— £V) has the behavior given in Eq. (4.3). 

By a rather lengthy but straightforward application 
of the definitions of the functions involved, the other 
condition implied by Eq. (A2) may be reduced to 

A0(l, 3; 0', -?;<OA0(1,1; - / V , 0;c) 
- A 0 ( l , 3 ; - A ) 2 , -£ 2 ;c )Ao( l , l ;0 ' ,0 ;c) = 0, (A8) 

but with the replacements 

where 

<£oi(0,c) -> —<£oi(AV) 
d\2 

*oi ' (0 ,c ) ->— 4>oi'(AV) 
d\2 

X2=0 

X2=0 

A0(l,i;0 , ,X2;c) = Ao(l ,y ;0 ,W) 

The left-hand side of Eq. (A9), however, is identically 
equal to 

A0(l, 3; 0, - { ' , c)A0(l, 1; 0', - f t 2 ; c), (A9) 

an expression which is necessarily zero by virtue of Eq. 
(4.2). Therefore, no condition on the parameters other 
than Eq. (4.2) is needed. 
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Protons from the Deuteron Bombardment of Helium-4 
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Proton spectra from the bombardment of He4 with deuterons of energies between 7.7 and 11 MeV have 
been obtained. A binding energy of — 0.93=fc0.07 MeV and a width of 0.57±0.02 MeV are obtained for the 
He5 ground state. A He4 (</,_/>) He5 excitation function over the Li6 excitation-energy range from 6.5 to 8.7 
MeV failed to confirm the existence of the proposed 7.4-MeV, T=0 level. An extrapolation and integration of 
the present measurements yields an estimate for the total reaction cross section of 460±80 mb at 10 MeV 
and 460±50 mb at 11 MeV. 

I. INTRODUCTION 

THIS paper reports on a study of proton spectra 
from the bombardment of He4 with deuterons of 

energies between 7.7 and 11 MeV. Protons may arise 
through any of the following three reactions or se
quences of reactions: 

J + H e 4 -

He5-

d + H e 4 -

Li5-

• H e H ^ + Q i , 

>Ke4+n+Q2, 

• L i 5 + H - 0 i ' , 

<H-He4 -> Ile^+n+p- 2.226 MeV, 

(1) 

(2) 

(3) 

where He5 (or Li5) may be left in its ground state or in 
an excited state, and where Q1+Q2—Q1+Q2— —2.226 
MeV. 

A study of these reactions is of interest from several 
points of view. Firstly, from reaction (1), one may 
obtain information about the width and binding energy 
of the ground state of He5 ; one may also look for 
evidence for excited states of He5, although the con
tributions from reactions (2) and (3) are likely to 
obscure such effects in a noncoincidence experiment 

such as the present one.1 Secondly, the present range of 
bombarding energies covers the range of Li6 excitation 
from 6.5 to 8.7 MeV. If reaction (1) proceeds at least 
partly via a compound-nucleus mechanism, an excita
tion function might be expected to yield information 
about the proposed T = 0 state in Li6 near 7.4 MeV.2 In 
particular, Sokolov et al.z reported that this state decays 
preferentially to He4+n+p rather than to He 4+d, so 
the present reaction (1) might be expected to be 
particularly sensitive to the effects of such a state. 
Finally, values of the total reaction cross section for 
deuterons on He4 may be obtained by extrapolation and 
integration of the proton spectra obtained in the present 
measurements; these quantities are useful for a phase-
shift or optical-model analysis of the d-Ke4 interaction. 

Protons from these reactions have been studied 
previously by several authors. Burge et al.4 observed 

1 For a summary of experiments which bear on the first excited 
state of He6 see P. Fessenden and D. R. Maxson, Phys. Rev. 133, 
B71 (1964). 

2 F . Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11, 1 
(1959). 

8 1 . L. Sokolov, M. M. Sulkovskaia, E. I. Karpushkina, and 
E. A. Albitskaia, Zh. Eksperim. i Teor. Fiz. 30, 1007 (1956) 
[English transl.: Soviet Phys.—JETP 3, 740 (1956)]. 

4 E . J. Burge, H. B. Burrows, W. M. Gibson, and J. Rotblat, 
Proc. Roy. Soc. (London) A210, 534 (1951). 


